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Аннотация. В статье представлена методика автоматической генерации учебных задач 
на тему анализа байткода виртуальных машин, а также программное средство на основе 
методики. Актуальность работы обусловлена потребностью в формировании у студентов 
направления подготовки 09.04.02 «Программная инженерия» компетенций, связанных с 
отладкой, анализом и обратной разработкой программных систем. Предложенный в ста-
тье подход основан на методике автоматической генерации задач по программированию 
П. Н. Советова, для порождения задач применяется метод «сгенерировать и проверить» 
из области программирования в ограничениях и техники трансляции и интерпретации 
сгенерированных промежуточных представлений. Задачи генерируются в виде тестов 
с поддержкой автоматической проверки решений в виде короткого ответа. Приведены 
оценки производительности разработанных генераторов задач, а также результаты их 
внедрения в учебный процесс.
Ключевые слова: автоматическая генерация задач, низкоуровневые представления, вирту-
альные машины, дизассемблирование, трансляторы, программирование в ограничениях.

Введение

В современных условиях способность разработчика программного обеспечения (ПО) ана-
лизировать низкоуровневое представление программного кода, такое как, например, байткод 
языковых виртуальных машин (ВМ) Lua [1] и CPython [2] или байткод кроссплатформенных 
ВМ JVM (Java Virtual Machine) [3] и CLR (Common Language Runtime) [4], становится одной из 
ключевых компетенций, необходимых для решения широкого круга практических задач: от 
отладки ПО с целью внесения в него исправлений для обеспечения корректной работы про-
граммной системы до анализа защищённости ПО или обратной разработки унаследованных 
программных систем.

Однако, формирование этой компетенции у студентов при обучении программированию 
и, в частности, при обучении отладке и обратной разработке ПО, в настоящее время затруд-
нено ввиду недостатка вариативных учебных заданий — решения задач, создаваемые препо-
давателями вручную, быстро оказываются в открытом доступе и покрывают лишь частные 
случаи низкоуровневых представлений кода. Вопросы автоматической генерации заданий для 
использования в учебном процессе дисциплин высшей школы рассматривались в ряде работ 
отечественных и зарубежных авторов. В частности, в [5] представлен генератор тестовых за-
даний по дифференциальным уравнениям, в [6] рассмотрен генератор тестовых заданий на 
тему разрешения зависимостей программных пакетов и генератор задач на работу с системой 
контроля версией, в [7] описывается подход к генерации заданий на тему определения ре-
зультатов выполнения программ, сгенерированных по правилам из порождающей контекст-
но-свободной грамматики (КСГ).

Предлагаемая в рамках данной работы методика автоматической генерации задач направ-
лена на решение проблемы недостатка вариативных учебных заданий на тему анализа низкоу-
ровневых представлений программного кода. Методика является модифицированной версией 
методики автоматической генерации учебных задач по программированию с поддержкой ав-
томатической проверки их программных решений, предложенной П. Н. Советовым в работе 
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[8] и основанной на применении метода решения задач программирования в ограничениях 
«сгенерировать и проверить», техник трансляции и интерпретации сгенерированных проме-
жуточных представлений (ПП) задач.

1. Методика и программное средство для её практического применения

Предлагаемая методика автоматической генерации задач на тему анализа низкоуровневых 
представлений программного кода включает следующие шаги:

1. Определение структуры задач в виде, например, порождающей КСГ.
2. Формализация ограничений для порождаемых задач в виде булевой формулы.
3. Автоматическая генерация ПП задач, удовлетворяющих ограничениям, на основе мето-

да решения задач программирования в ограничениях «сгенерировать и проверить».
4. Трансляция сгенерированных ПП в программный код на высокоуровневом языке про-

граммирования и компиляция кода в целевое низкоуровневое представление.
5. Интерпретация сгенерированных ПП для вычисления результата выполнения целевого 

низкоуровневого представления программного кода.
6. Загрузка низкоуровневых представлений программного кода и результатов их выполне-

ния в систему управления обучением.
Предложенная методика была применена для автоматизации некоторых видов рутинной 

деятельности преподавателей по подготовке сборников задач для дисциплины «Разработка 
кроссплатформенных программных систем», которая преподаётся студентам направления 
подготовки 09.04.02 «Программная инженерия» Института информационных технологий 
РТУ МИРЭА. Архитектура разработанного на основе предложенной методики программного 
средства, выполняющего порождение тестовых заданий на тему анализа текстового формата 
байткода ВМ Lua [1], CPython [2], JVM [3] и CLR [4] представлена на рис. 1.

Чёрные прямоугольники на рис. 1 соответствуют сторонним модулям, необходимым для 
преобразования ПП в текстовый формат байткода ВМ. Белые прямоугольники на рис. 1 соот-
ветствуют внутренним компонентам разработанного программного средства. Как показано 
на рис. 1, в разработанном программном средстве ПП — это деревья выражений, их генерация 
выполняется на основе порождающей КСГ по следующим правилам:

	 C 1 2 3 4 5,→ 	 (1)

Рис. 1. Архитектура генератора задач на тему анализа низкоуровневых представлений кода
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	 V x | y,→ 	 (2)
	 O * / % &,→−   	 (3)
	 ( )E V O C  V  C,→ 	 (4)
	 P | ,→+ − 	 (5)
	 ( )( )( )S E P E P E P E .→ 	 (6)

Генерация деревьев выражений по КСГ начинается с правила (6). Символ |  используется 
для компактной записи альтернатив, а нетерминальные символы обозначены большими бук-
вами. Порождаемые выражения (4) могут содержать имена переменных x  и y  (2), целочис-
ленные константы (1), арифметические или побитовые операции (3). Несколько выражений 
(4) объединяются в одно (6) при помощи операторов сложения или вычитания (5).

После генерации ПП в виде дерева выражения G  по КСГ, начиная с правила (6), выполня-
ется проверка удовлетворения ПП G  следующего ограничения:

	 ( ) ( )( ) : {x, y} ( ) : { , ,&,%} ,n V G n n V G n∃ ∈ ∈ ∧ ∃ ∈ ∈   	 (7)
где ( )V G  — множество вершин ПП задачи ,G  n  — вершина дерева ,G  x  и y  — имена пере-
менных, согласно (7) хотя бы один из символов x  и y  должен присутствовать в .G

В случае несоответствия ПП ограничению (7) процесс генерации ПП по КСГ (6) и провер-
ки ограничения (7) повторяется до достижения успеха.

2. Трансляторы промежуточных представлений в текстовый формат байткода

На следующем этапе выполняется трансляция ПП в программный код на высокоуровне-
вом языке программирования, который затем компилируется в низкоуровневое представле-
ние. Детали реализации трансляторов ПП в текстовый формат байткода языковых ВМ Lua [1] 
и CPython [2] приведены в табл. 1.

Таблица 1
Детали реализации трансляторов ПП в байткод Lua и CPython

ВМ Детали реализации Пример байткода в текстовой форме
Lua Компиляция и дизассемблирование:

$ luac -l -l program.lua

Содержимое файла program.lua:
function main(x, y)
  return ((1 + x) - y) + 2
end

Необходимые компоненты:
Lua 5.3.6.

 1 [2] GETTABUP 0 0 -1
 2 [2] ADD      0 -2 0
 3 [2] GETTABUP 1 0 -3 
 4 [2] SUB      0 0 1 
 5 [2] ADD      0 0 -4 
 6 [2] RETURN   0 2
constants (4) for 00: 
 1 «x» 
 2 1 
 3 «y» 
 4 2  

CPython Компиляция и дизассемблирование:
$ python program.py

Содержимое файла program.py:
import dis
dis.dis('((1 + x) - y) + 2')

Необходимые компоненты: Python 
3.12.0.

 2 LOAD_CONST    0 (1)
 4 LOAD_NAME     0 (x)
 6 BINARY_OP     0 (+)
10 LOAD_NAME     1 (y)
12 BINARY_OP    10 (-)
16 LOAD_CONST    1 (2)
18 BINARY_OP     0 (+)
22 RETURN_VALUE
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Для генерации постановок задач на тему анализа байткода ВМ, являющихся частью ин-
терпретаторов языков Lua и Python, сгенерированное ПП, удовлетворяющее ограничению 
(7), транслируется в программный код на языке Lua или Python, после чего код на языке Lua 
дизассемблируется при помощи компилятора luac [1] с указанными в табл. 1 опциями, а код 
на языке Python дизассемблируется при помощи модуля dis, встроенного в интерпретатор 
CPython [2], посредством исполнения кода на языке Python, показанного в табл. 1.

Детали реализации трансляторов ПП в текстовый формат байткода кроссплатформенных 
ВМ JVM [3] и CLR [4] приведены в табл. 2.

Таблица 2
Детали реализации трансляторов ПП в байткод JVM и CLR

ВМ Детали реализации Пример байткода в текстовой форме
CLR Компиляция и дизассемблирование:

$ dotnet build -c Debug
$ ildasm /caverbal /item:»Src.
Program::Main» bin/Debug/net8.0/
Src.dll /out:Program.il

Содержимое файла Program.cs:
namespace Src;
public class Program {
 public int Main(
  int x, int y) {
  return ((1 + x) - y) + 2;
 }
}

Необходимые компоненты:
.NET 8.0.406,
ILDAsm 9.0.0.

.class public auto ansi 
beforefieldinit Src.Program 
extends System.Object {
 .method public hidebysig 
instance int32 Main(int32 x, 
int32 y) cil managed {
  .maxstack 2
  .locals init (int32 V_0)
  IL_0000: nop
  IL_0001: ldc.i4.1
  IL_0002: ldarg.1
  IL_0003: add
  IL_0004: ldarg.2
  IL_0005: sub
  IL_0006: ldc.i4.2
  IL_0007: add
  IL_0008: stloc.0
  IL_0009: br.s IL_000b
  IL_000b: ldloc.0
  IL_000c: ret
 }
}

JVM Компиляция и дизассемблирование:
$ javac Program.java
$ javap -c Program.class

Содержимое файла Program.java:
public class Program {
 public static int main(
  int x, int y) {
  return ((1 + x) - y) + 2;
 }
}

Необходимые компоненты: Java 21.0.8.

public class Program {
 public static int main(int,int);
  Code:
   0: iconst_1
   1: iload_0
   2: iadd
   3: iload_1
   4: isub
   5: iconst_2
   6: iadd
   7: ireturn
}

Для генерации задач на тему анализа байткода JVM ПП сначала транслируется в код на языке 
Java, сохраняемый в файл Program.java. После этого при помощи компилятора javac генерирует-
ся байткод JVM и сохраняется в файл Program.class, который затем дизассемблируется утилитой 
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javap. Для генерации задач на тему анализа байткода CLR ПП транслируется в код на языке C#, 
сохраняемый в файл Program.cs, после чего выполняется сборка .NET-проекта при помощи си-
стемы сборки MSBuild. После сборки файл с именем Src.dll, содержащий байткод на языке CIL 
(Common Intermediate Language), дизассемблируются при помощи утилиты ILDasm [9].

Результаты генерации задач на тему анализа текстового формата байткода языковых и 
кроссплатформенных ВМ были преобразованы в формат GIFT и затем загружены в систему 
управления обучения Moodle [6]. Пользовательский интерфейс Moodle, который видит сту-
дент, выполняющий задачу на тему анализа CIL – байткода CLR, показан на рис. 2.

Как показано на рис. 2, подстановка задачи в системе управления обучением содержит тек-
стовый формат байткода ВМ, входные значения переменных, а также ссылку на документацию 
по ВМ, результат выполнения байткода которой необходимо определить студенту. Интерпретатор 
ПП задачи, который является частью разработанного программного средства для генерации задач 
(см. рис. 1), вычисляет значение сгенерированного ПП и сохраняет полученное значение в систему 
управления обучением для поддержки автоматической проверки ответа, указанного студентом.

3. Оценки производительности генераторов

Оценка производительности разработанного программного средства, применяемого для 
генерации учебных задач на тему анализа низкоуровневых представлений программного кода 
для 4-х различных ВМ проводилась на компьютере со следующими характеристиками: Intel 
Core i3-1115G4, 8 GB RAM, Windows 11. Программное средство было реализовано на язы-
ке программирования Python версии 3.12.0. Взаимодействие с утилитами командной строки, 
такими как компиляторы luac, javac, система сборки MSBuild, дизассемблеры javap и ILDasm, 
осуществлялось при помощи стандартного модуля subprocess языка Python.

Полученные результаты приведены в табл. 3.
Таблица 3

Оценки производительности генераторов задач различных типов
ВМ Lua CPython CLR JVM

Производительность, задач в минуту 1787 977 37 74

Рис. 2. Задача на тему анализа байткода CLR в пользовательском интерфейсе Moodle
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Как показано в таблице 3, генераторы задач на тему анализа байткода ВМ языков Lua и 
CPython работают быстрее, чем генераторы задач на тему анализа байткода CLR и JVM. Это 
связано с тем, что байткод ВМ Lua и CPython существенно проще, а компиляция и дизассем-
блирование программ на этих языках в разработанном программном средстве не требует со-
хранения байткода на диск [1, 2]. Кроме того, байткод JVM и CLR предназначен не только для 
интерпретации, но и для оптимизации на этапе выполнения Just-In-Time (JIT)-компилятором, 
что требует сохранения детальной информации о типах, сигнатурах методов, наследовании и 
других высокоуровневых свойствах программы [3, 9].

4. Результаты внедрения в учебный процесс

Разработанное на основе предложенной методики программное средство использовалось 
для генерации и загрузки в систему управления обучением по 500 случайных задач на тему 
анализа байткода ВМ Lua, CPython, JVM, CLR. На основе полученного пула из 2000 задач было 
создано 2 теста. Первый тест включал 12 случайно выбранных из пула задач на тему опреде-
ления результата выполнения байткода языковых ВМ Lua и CPython. Второй тест включал 
12 случайно выбранных из пула задач на тему определения результата выполнения байткода 
кроссплатформенных ВМ JVM и CLR. 

В случае сдачи этих тестов не на максимальный балл студенты могли попытаться решить 
задачи снова, до исчерпания лимита в 7 попыток, при этом использовался метод оценивания 
«высшая оценка». Для успешной сдачи теста студентам было предложено реализовать упро-
щённые эмуляторы стековой и регистровой ВМ. Сведения о результатах выполнения этих те-
стов студентами дисциплины «Разработка кроссплатформенных программных систем», кото-
рая преподаётся студентам Института информационных технологий РТУ МИРЭА, приведены 
в табл. 4.

Таблица 4
Сведения о выполнении сгенерированных задач студентами

Метрика ВМ Lua и CPython ВМ CLR и JVM
Всего попыток 493 187
Задач в тесте 12 12
Среднее число решённых задач 9 10
Медианное число решённых задач 10 11
Среднее время выполнения, мин. 27 22
Медианное время выполнения, мин. 25 18
Среднее число попыток 2 2
Медианное число попыток 2 1

Как показано в табл. 4, среднее и медианное число решённых задач во 2-м тесте выше, а 
медианное число попыток — ниже, как и время выполнения теста. Это связано, с одной сторо-
ны, с тем, что 2-й тест предлагался к выполнению в течение семестра после 1-го теста и к мо-
менту начала работы над 2-м тестом студенты уже были знакомы с задачами на тему анализа 
байткода ВМ. Разница в результатах связана ещё и с тем, что 1-й тест содержал задачи на тему 
анализа байткода стековой ВМ CPython и регистровой ВМ Lua, а ВМ CLR и JVM из 2-го теста 
обе являются стековыми.
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Заключение

В работе представлена методика и программное средство для автоматической генерации 
учебных задач на тему анализа низкоуровневых представлений программного кода, таких как 
байткод ВМ Lua, CPython, CLR и JVM. Предложенная методика основана на результатах, по-
лученных в работе [8], и предполагает применение метода решения задач программирования 
в ограничениях «сгенерировать и проверить», порождающей КСГ, трансляторов и интерпре-
татора ПП задач для поддержки автоматической проверки решений. Полученные оценки про-
изводительности и результаты внедрения в учебный процесс подтверждают применимость 
предложенной методики для автоматизации некоторых видов рутинной деятельности препо-
давателей высшей школы по подготовке сборников задач.

Дальнейшая работа может быть направлена на добавление поддержки трансляции ПП за-
дач и в другие низкоуровневые представления программного кода, такие как, например, дере-
вья абстрактного синтаксиса, LLVM IR (Low Level Virtual Machine Intermediate Representation), 
WAT (WebAssembly Text Format), формат команд процессорных архитектур x86_64, ARM, 
RISC-V.
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УДК 621–32

СРАВНИТЕЛЬНЫЙ АНАЛИЗ ТЕХНОЛОГИЙ АВТОМАТИЗАЦИИ 
СЛОЖНЫХ ПРОИЗВОДСТВЕННЫХ КОМПЛЕКСОВ

Воронежский государственный университет

Лавлинская О. Ю., Сангаре Умар

Аннотация. В статье проводится сравнительный анализ современных технологий авто-
матизации сложных производственных комплексов, таких как нефтеперерабатывающие 
заводы, металлургические комбинаты, предприятия химической промышленности и 
фармацевтики. Рассматриваются ключевые архитектурные подходы — от традиционных 
систем диспетчерского управления и сбора данных (SCADA) и распределенных систем 
управления (DCS) до современных концепций Industrie 4.0, киберфизических систем 
(CPS) и платформ Industrial Internet of Things (IIoT). Критериями для сравнения выступа-
ют масштабируемость, гибкость, интеграционная способность, безопасность, стоимость 
владения и поддержка сквозной цифровизации (Digital Thread). По результатам анализа 
сформулированы рекомендации по выбору технологической платформы в зависимости 
от специфики и стратегических целей предприятия.
Ключевые слова: автоматизация, SCADA, DCS, IIoT, Индустрия 4.0, киберфизические си-
стемы, цифровой двойник, гибкое производство, сравнительный анализ.

Введение

Современные промышленные производства характеризуются сложностью, высоким уров-
нем взаимосвязанности технологических процессов и жесткими требованиями к эффектив-
ности, качеству и безопасности производственных процессов. Устаревшие системы автома-
тизации, функционирующие по принципу «жесткой» логики, не способны удовлетворить 
растущие потребности в адаптивности, оптимизации ресурсов и скорости вывода новых про-
дуктов на рынок. На смену им приходит новое поколение технологий, базирующихся на сим-
биозе виртуальных моделей и физических процессов. Цель данного анализа — систематизиро-
вать существующие решения в области промышленной автоматизации, выявить их сильные и 
слабые стороны, а также определить эффективные подходы к выбору технологий автоматиза-
ции и цифровизации для решения производственных задач.

1. Обзор мирового рынка промышленной автоматизации и цифровизации

По данным аналитического обзора [1] размер мирового рынка промышленной автоматиза-
ции в 2021 году оценивался в 177,57 млрд долларов, прогноз на 2030 год составляет 441,7 млрд 
долларов, что показано на рис. 1. В 2021 году оставная доля в 34 % высокотехнологичных про-

Рис.1. Динамика роста мирового рынка производственной автоматизации
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изводств приходилась на Северную Америку, но лидерами рынка к 2030 будут страны Ази-
атско-Тихоокеанский региона, так как тенденции роста в этих странах выше общемировых 
показателей. Среднегодовой прирост (CAGR) суммы вложений с 2022 по 2030 год в промыш-
ленную автоматизацию и цифровизацию составит 8,84 %.

В РФ на период 2025 года рынок автоматизации и цифровизации составляет 250 млн. долл, 
прогнозируется среднегодовой рост высокотехнологичных решений на 5,1 %. Темп роста ниже 
мирового уровня, но, достаточно высокий для решения критически важных задач в сфере про-
мышленной автоматизации [1]. Ключевые драйверы рынка промышленной автоматизации в 
РФ на 2025-2026 год:

1. Умные производственные линии и роботизация. В данном сегменте доля компаний, вне-
дривших роботов в производство, выросла до 45 %. Данный показатель выше предыдущих пе-
риодов, но существенно отстает от мировых тенденций. Лидером роста робототизированных 
производств является Китай. В 2025 году в Китае был установлен мировой рекорд — 2 027 000 
промышленных роботов, работающих на заводах. В 2024 г. ежегодные установки достигли 
295 000 единиц. Этот показатель вырос 7 %, что является самым высоким показателем за всю 
историю наблюдений и составляет 54 % мирового спроса в области робототехники. Об этом 
говорится в отчете World Robotics 2025, представленном Международной федерацией робото-
техники (IFR) [2]. 

2. Индустриальный интернет вещей (IIoT). В 2025 году число подключённых IIoT-устройств 
на российских предприятиях достигло уровня в 50 млн. экземпляров. Оценка устройств IIoT в 
мировом масштабе на 2025 год – 75 миллиардов подключенных устройств [1].

3. Big Data и предиктивная аналитика. Внедрение интеллектуальных технологий позволя-
ют сокращать затраты на техническое обслуживание, управление и контроль качества на 30 %. 

Сегмент внедрения технологий больших данных в сочетании с алгоритмами прогнозиро-
вания – наиболее интенсивно развивающая отрасль автоматизации. 

В целом, по данным агентства Infinium Global Research [3] российский рынок аналитики 
данных вырастет с 3 204,23 млн долларов США в 2024 году до примерно 13 963,17 млн дол-
ларов США к 2032 году, демонстрируя впечатляющий среднегодовой темп роста в 20,96 % в 
период с 2025 по 2032 год. Этот рост отражает растущую интеграцию процессов принятия 
решений на основе данных в различных отраслях, в том числе, в производстве. 

Рассмотрим основные технологии автоматизации в промышленности.

2. Распределенные системы управления (DCS)

Централизованная многоуровневая архи-
тектура для управления технологическими 
процессами в реальном времени объединяет 
контроллеры, системы ввода-вывода и HMI в 
единую экосистему с высокой надежностью. 
Примеры: Siemens SIMATIC PCS 7, Emerson 
DeltaV, ABB Ability™ System 800xA, а также 
российские решения от «Чинт Электрик», 
НИИ «Энергосетьпроект», РУСЭНЕРГОС-
БЫТ и др. [4–8]. Типовая архитектура распре-
деленной системы управления представлена 
на рис. 2.

Основные преимущества распределенных 
систем управления: высокая надежность и 
предсказуемость, глубокая интеграция обо-

Рис. 2. Типовая архитектура 
распределенной системы управления
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рудования, идеальная поддержка сложных ПИД-регуляторов, сильная встроенная функцио-
нальная безопасность [9].

Основные недостатки: «Закрытость» экосистемы, высокая стоимость лицензий и обновле-
ний, сложность интеграции с оборудованием сторонних производителей, сложность модер-
низации. 

Текущий объем рынка распределенных систем управления составляет $21,04 млрд (оценка 
на 2025 год). Ожидается, что к 2035 году рынок увеличится до $39,49 млрд, демонстрируя сред-
негодовой темп роста около 6,5 %.[2] 

Важнейшими драйверами роста являются быстрое распространение технологий Интер-
нет-вещей (IoT), автоматизация промышленного производства и необходимость эффектив-
ного управления электроэнергией.[3]

3. Системы диспетчерского управления и сбора данных (SCADA)

Системы, ориентированные на сбор данных с удаленных объектов (полевых контроллеров, 
PLC) и предоставление оператору средств для диспетчерского управления. Более гибкие, чем 
DCS, так как могут агрегировать данные из разнородных источников [10].

Примеры SCADA-систем:
Мировой рынок: Ignition, WinCC, GE Digital iFIX, Wonderware System Platform.
Российский рынок: КАСКАД (универсальная, высокая производительность), Альфа Плат-

форма (гибкая, масштабируемая), МастерСКАДА 4D (модульная, визуализация), REDKIT 
SCADA 2.0 (гибкость, нефтегаз/металлургия), ИнтраСКАДА (интеграция с ERP, поддержка 
отечественного оборудования).

Основные преимущества систем диспетчерского управления и сбора данных — это гиб-
кость и открытость (поддержка множества протоколов связи — OPC UA, MQTT), относитель-
но низкая стоимость внедрения, отличная приспособленность для мониторинга распределен-
ных активов (трубопроводы, электросети).

Основные недостатки систем диспетчерского управления и сбора данных: слабая, по срав-
нению с DCS, «глубина» управления процессами в реальном времени; сложности интегрира-
ции с системами безопасности.

4. Платформы Промышленного Интернета Вещей (IIoT), концепция Индустрии 4.0

IIoT-платформы собирают данные с оборудования с помощью облачных технологий, обе-
спечивают аналитику и переход к предиктивному управлению. К достоинствам относятся 
масштабируемость, аналитика и поддержка цифровых двойников [11]. 

Недостатки: зависимость от сети, энергозатраты, киберриски и высокая стоимость обра-
ботки данных. Сравнение технологических подходов к автоматизации представлено в табл. 1.

Цифровые двойники объединяют автоматизацию производства с телекоммуникационны-
ми и инженерными технологиями, позволяя создавать виртуальные модели промышленных 
объектов. Производственный цикл реализуется в виртуальном пространстве по принципам 
MBSE, а затем интегрируется в физическую среду. Такой подход требует модульной архитек-
туры и автоматизации промышленных производственных комплексов [12,13].

5. Практические рекомендации по выбору технологий 
автоматизации промышленных комплексов

Выбор технологий зависит от задач предприятия: для крупных непрерывных производств 
подходит DCS с дополнением IIoT-платформой; для дискретных и гибридных — SCADA-систе-
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мы с PLC плюс IIoT для мониторинга; для модернизации — внедрение IIoT через OPC-шлюзы 
без замены оборудования; для новых «умных» производств — архитектура Индустрии 4.0 с 
киберфизическими системами и цифровыми двойниками. Ключевые компоненты и техноло-
гии цифровых двойников представлены на рис. 3 и рис. 4.

Для создания цифровых двойников требуются сбор данных, мониторинг, прогнозирова-
ние и моделирование.

Рис. 3. Ключевые компоненты 
цифровых двойников

Рис. 4. Создание цифровых двойников

Таблица 1
Сравнение технологий автоматизации промышленных производств

Критерий DCS SCADA IIoT / Индустрия 4.0
Основная задача Надежное управление не-

прерывным процессом в 
реальном времени

Сбор данных и диспетче-
ризация распределенных 
объектов

Сквозная аналитика, 
предиктивная аналити-
ка, гибкость

Архитектура Закрытая, централизо-
ванная, иерархическая

Более открытая, клиент- 
серверная

Децентрализованная, об-
лачная, сервис-ориенти-
рованная

Интеграция Глубокая, но в рамках 
экосистемы вендора

Гибкая, со множеством 
сторонних устройств 
(через OPC и т.д.)

Максимально открытая, 
горизонтальная интегра-
ция IT/OT

Масштабируемость Сложная и дорогая, в 
рамках одной экосистемы

Относительно простая, 
но может требовать до-
бавления серверов

Практически неограни-
ченная, за счет облачных 
технологий

Гибкость 
и адаптивность

Низкая, изменения тре-
буют сложных процедур

Средняя, конфигурация 
изменяема

Высокая, возможность 
быстрого развертывания 
новых сервисов

Аналитика и AI/ML Базовая, исторический 
тренд

Средняя, расширенная 
визуализация и отчет-
ность

Высшая, предиктивное 
моделирование, оптими-
зация с помощью ML

Кибербезопасность Сильная, но в рамках «за-
крытого» периметра

Зависит от реализации, 
требует постоянного 
контроля

Критически важна, тре-
бует комплексного под-
хода (zero trust и др.)

Стоимость владения 
(TCO)

Высокая начальная сто-
имость, высокие затраты 
на обновление

Умеренная начальная 
стоимость

Модель подписки (SaaS), 
но могут быть высоки 
затраты на интеграцию и 
данные
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Процесс автоматизации и цифровизации включает установку датчиков, объединение дан-
ных на IoT-платформе, создание виртуальной копии, анализ с помощью ИИ, работу интер-
фейса для отслеживания показателей и обмен информацией между объектами и пользовате-
лями цифровой системы промышленного комплекса.

Заключение

Не существует универсального «лучшего» решения. Эволюция технологий автоматиза-
ции движется от жестких, иерархических систем (DCS) к гибким, открытым и сетевым (IIoT). 
Будущее за гибридными подходами, где надежность DCS на уровне управления процессом 
сочетается с аналитической мощью и гибкостью IIoT-платформ на уровне управления пред-
приятием. Ключевым фактором успеха становится не столько выбор конкретной платформы, 
сколько способность предприятия выстроить сквозную цифровую стратегию, обеспечиваю-
щую свободный поток данных и их преобразование в реальные бизнес-ценности.
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ПРОБЛЕМА ТОЧНОСТИ МАТЕМАТИЧЕСКИХ ВЫЧИСЛЕНИЙ В PYTHON 
И МЕТОДЫ ЕЁ ПОВЫШЕНИЯ НА ПРИМЕРЕ ФУНКЦИЙ БЕССЕЛЯ

Воронежский государственный университет

О. Ю. Лопухинский, Л. А. Минин

Аннотация. В работе исследуется проблема точности вычисления функций Бесселя на 
языке Python и методы её повышения с учётом оптимизации быстродействия. Проведе-
но сравнительное тестирование встроенных средств языка, а также библиотек Decimal, 
Fractions, Mpmath и SciPy при расчёте функции Бесселя первого рода нулевого порядка че-
рез ряд Тейлора. Показано, что библиотека Mpmath демонстрирует наилучшее сочетание 
высокой точности и производительности, в то время как SciPy обеспечивает достаточ-
ную точность для большинства практических задач при высокой скорости вычислений. 
Определены рекомендации по выбору инструментария в зависимости от требований к 
точности и производительности.
Ключевые слова: функции Бесселя, точность вычислений, Python, ряды Тейлора, Mpmath, 
SciPy, Decimal, Fractions, производительность, численные методы, сравнение библиотек.

Введение

Точность вычислений и производительность являются ключевыми требованиями при ре-
ализации математических моделей в программном обеспечении, особенно в таких областях, 
как оптика, обработка сигналов и управление сложными системами. Язык Python, несмотря на 
простоту использования, по умолчанию обеспечивает ограниченную точность вычислений. 
Однако есть способы повышения точности вычислений, что требует применения специализи-
рованных библиотек.

В качестве примера рассматриваются функции Бесселя — важный математический аппа-
рат, широко используемый в науке и технике. В статье анализируются методы повышения точ-
ности их расчёта в Python с использованием библиотек Decimal, Fractions, Mpmath и SciPy, а 
также оценивается влияние выбранного метода на быстродействие [3, 4, 5, 6].

1. Методы вычисления функций Бесселя

1.1. Ряд Тейлора для функций Бесселя

Функция Бесселя первого рода нулевого порядка может быть представлена в виде ряда:
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точность вычисления существенно зависят от используемого численного метода [1].

1.2. Библиотеки для вычислений с повышенной точностью

Decimal — библиотека для десятичной арифметики с фиксированной точностью и пользо-
вательским управлением округлением [5]. 

Fractions — модуль для работы с рациональными числами, представляя их в виде рацио-
нальных дробей. Обеспечивает достаточно точные вычисления без потерь, но отличается низ-
кой производительностью и подходит для задач, требующих абсолютной точности [6].
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Mpmath — специализированная библиотека для вычислений с задаваемой точностью, 
включающая реализации специальных функций. Оптимизирована для математических рас-
чётов высокой точности [4].

SciPy — библиотека для научных вычислений, использующая оптимизированные алгорит-
мы и стандартную арифметику с плавающей точкой. Обеспечивает высокую производитель-
ность и достаточную точность для большинства прикладных задач [3].

2. Экспериментальное сравнение точности

2.1. Методика эксперимента

Для сравнения точности различных библиотек было выполнено вычисление функции 
0 (0.5)J  с использованием каждого из рассматриваемых подходов. В качестве эталонного зна-

чения использовался результат библиотеки Mpmath [4] с установленной точностью 100 деся-
тичных знаков.

2.2. Программная реализация

Для сравнительного анализа точности вычисления функций Бесселя была разработана 
программа на языке Python с использованием следующих библиотек: math, decimal [5], fractions 
[6], mpmath [4], scipy [3].

Для каждого метода была реализована функция вычисления 0 (0.5)J  через разложение в 
ряд Тейлора:

Реализация с использованием встроенных float:
def bessel_builtin(x, n_terms=50):
    result = 0.0
    for k in range(n_terms):
        term = ((-1) ** k) * ((x / 2) ** (2 * k)) / (math.factorial(k) ** 2)
        result += term
        if abs(term) < 1e-20:  # Критерий остановки
            break
    return result

Реализация с использованием Decimal:
decimal.getcontext().prec = 50
def bessel_decimal(x, n_terms=100):
    x = decimal.Decimal(str(x))
    result = decimal.Decimal(0)
    for k in range(n_terms):
        term = (-1) ** k * (x/2) ** (2*k) / decimal.Decimal((math.factorial(k)) ** 2)
        result += term
    return result

Реализация с использованием Fractions:
def bessel_fractions(x, n_terms=20):
    x_frac = Fraction(x)
    result = Fraction(0)
    for k in range(n_terms):
        numerator = (-1) ** k * (x_frac / 2) ** (2 * k)
        denominator = Fraction(math.factorial(k)) ** 2
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        term = numerator / denominator
        result += term
    return result

Реализация с использованием mpmath (для x=0.5):
mpmath.mp.dps = 100
x = 0.5
result = mpmath.besselj(0, x)

Реализация с использованием scipy (для x=0.5):
x = 0.5
result = float(scipy.special.jv(0, x))

2.3. Результаты сравнения

Результаты сравнения точности и скорости вычисления 0 (0.5)J  приведены в табл. 1, табл. 2, 
табл. 3

Таблица 1
Точность и скорость встроенных методов и SciPy

Метод Результат Точность Время
Встроенные функции 0.938469807240813 15 знаков после запятой ~0.00001 сек.
Scipy 0.93846980724081297 17 знаков после запятой ~0.00004 сек.

Таблица 2
Точность и скорость метода Fractions

Результат Точность Время
50 50499655 10 / 532414 10⋅ ⋅ 60 знаков после запятой ~0.0002 сек.

Таблица 3
Скорость методов Mpmath и Decimal (точность 100 знаков)

Метод Последние 8 знаков после запятой из 100 Время
Mpmath 93553603 ~0.0000525 сек.
Decimal 93553600 ~0.000551 сек.

2.4. Анализ результатов сравнительного тестирования

Проведенное исследование позволяет оценить сильные и слабые стороны каждого из рас-
смотренных инструментов для вычисления функций Бесселя.

• Встроенные функции Python (float) показывают наивысшую скорость, что делает их при-
годными для задач, где производительность критична, а требования к точности умеренны 
(например, прототипирование, визуализация, образовательные проекты). Однако точность 
ограничена точностью стандартной арифметики с плавающей запятой.

• Библиотека SciPy [3] демонстрирует отличное сочетание скорости и точности, предостав-
ляя результат с точностью до 17 знаков после запятой. Это оптимальный выбор для большин-
ства прикладных научных и инженерных задач, где важна высокая производительность при 
работе с большими массивами данных.

• Библиотека Fractions [6] обеспечивает теоретически бесконечную точность за счет рабо-
ты с рациональными числами, что исключает ошибки округления. Однако этот метод обладает 
наихудшей производительностью и на практике применим лишь для вычислений с неболь-
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шим количеством членов ряда или в символьных вычислениях, где точность представления 
дроби абсолютно критична.

• Библиотека Decimal [5] позволяет достигать заданной высокой точности (в эксперимен-
те — 100 знаков), что делает её мощным инструментом для финансовых расчётов и задач, тре-
бующих контроля над округлением. Тем не менее, её производительность существенно ниже, 
чем у Mpmath и SciPy.

• Библиотека Mpmath [4] продемонстрировала наилучший баланс между высокой точно-
стью (возможность задания произвольного количества знаков) и приемлемой производитель-
ностью. Это делает её предпочтительным выбором для задач, требующих гарантированной 
высокой точности: фундаментальные научные расчёты, криптография, верификация алгорит-
мов и точный численный анализ.

Выбор библиотеки представляет собой компромисс между точностью и быстродействием. 
Для высокопроизводительных вычислений с достаточной для приложений точностью оптима-
лен SciPy [3]. Для вычислений с произвольной точностью и её полным контролем наилучшим 
выбором является Mpmath, в то время как Decimal служит надежной альтернативой для деся-
тичной арифметики. Fractions и встроенные float занимают свои узкие, но важные ниши [4–6].

Заключение

В рамках данной работы была исследована проблема ограниченной точности математиче-
ских вычислений в Python и методы её решения на примере расчёта функции Бесселя первого 
рода нулевого порядка. Несмотря на простоту использования, стандартные средства языка не 
всегда удовлетворяют требованиям высокоточных научных расчётов.

Для решения этой проблемы было проведено сравнительное тестирование различных под-
ходов: от встроенной арифметики с плавающей точкой и рациональных дробей (Fractions [6]) 
до специализированных библиотек для вычислений с произвольной точностью (Decimal [5], 
Mpmath [4]) и высокопроизводительных научных инструментов (SciPy [3]). В качестве базо-
вого метода использовалось разложение функции в ряд Тейлора, что позволило единообразно 
оценить как точность, так и производительность каждого подхода.

Результаты эксперимента наглядно продемонстрировали фундаментальный компромисс 
между точностью и быстродействием:

• Быстродействующие методы (встроенные float, SciPy [3]) обеспечивают приемлемую точ-
ность для большинства прикладных задач.

• Специализированные библиотеки (Mpmath [4], Decimal [5]) позволяют достигать произ-
вольно высокой точности, ценой увеличения вычислительных затрат.

Таким образом, подтвержден основной тезис введения: для преодоления ограничений стан-
дартных вычислений в Python необходимо и целесообразно привлекать внешние библиотеки. 
Настоящее исследование предоставляет практические рекомендации по их выбору: Mpmath 
[4] является оптимальным решением для задач, требующих гарантированной высокой точно-
сти, в то время как SciPy [3] предпочтительнее для высокопроизводительных вычислений, где 
достаточна стандартная точность. Данный вывод позволяет разработчикам и исследователям 
осознанно выбирать инструментарий, основываясь на конкретных требованиях к точности и 
производительности их проектов.
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А. Г. Потапов

Аннотация. Использование гибридного вычислительного кластера в образовательном 
процессе требует поддержания его программного обеспечения в актуальном состоянии. 
Наличие в программной архитектуре слабых мест может приводить к потере произво-
дительности и сбоям в системе, что негативно сказывается на скорости выполнения на-
учных и образовательных задач. Проведение реорганизации программного комплекса 
вычислительного кластера Воронежского государственного университета призвано лик-
видировать имеющиеся недостатки и получить как можно большую производительность 
при текущей архитектуре.
Ключевые слова: вычислительный кластер, образовательный процесс, гибридная архи-
тектура, Xeon Phi, сетевая загрузка, TFTP, xCAT, паравиртуализация, Xen-гипервизор, 
LDAP, SLURM, Linux.

Введение

Установка и настройка операционной системы на крупных вычислительных комплексах 
требует особой внимательности и скрупулёзности, поскольку выход из строя одного из ком-
понентов тесно взаимосвязанной системы (к примеру, драйвера высокоскоростного интер-
коннекта InfiniBand) может привести к возникновению труднонаходимых проблем на всём 
кластере. С другой стороны, наличие в его составе нескольких узлов с идентичной архитек-
турой делает возможным унификацию процесса установки и настройки ключевых программ-
ных компонентов, что, в свою очередь, существенно упрощает их администрирование.

На протяжении года рассматривались различные варианты организации программной 
структуры вычислительного кластера ВГУ [1]. Некоторые из предложенных стратегий были 
отклонены в силу несовместимости с аппаратными компонентами и больших издержек при 
их настройке и сопровождении, другие же показали свою жизнеспособность и были успешно 
реализованы на практике. В данной статье будут приведены наиболее удачные решения, пока-
завшие свою эффективность.

Первая часть посвящена процессу установки и настройки операционной системы в целом 
на каждый из вычислительных и служебных узлов кластера, включая использование техноло-
гий сетевой загрузки и паравиртуализации. Во второй части будут рассмотрены некоторые 
изменения в структуре отдельных программных компонентов, таких как LDAP-сервер и оче-
редь исполнения SLURM.

1. Установка операционной системы

1.1. Сетевая загрузка на вычислительных узлах

Первым и наиболее важным шагом в настройке вычислительных узлов кластера является 
выбор типа загрузки операционной системы. С одной стороны, можно выполнить установ-
ку на локальных SSD-дисках, физически размещённых на каждом из настраиваемых узлов. 
В этом случае максимально упрощается настройка одного конкретного узла, на который ста-
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нет возможным установить операционную систему с той же лёгкостью, с какой эта задача вы-
полняется на домашнем компьютере.

С другой стороны, в ходе последующей настройки типично «кластерных» компонентов, 
включающих системы коммуникации, распределённую файловую систему, централизованное 
управление учётными записями пользователей и систему очередей исполнения, становится 
очевидным неэффективность и времязатратность такого подхода, поскольку каждый из ком-
понентов приходится настраивать отдельно на каждом узле. Более разумным вариантом ста-
нет рассмотрение сетевой загрузки.

Структура кластера ФКН ВГУ неоднородна. В его составе 10 вычислительных узлов, одна-
ко семь из них имеют в своём составе сопроцессоры Intel Xeon Phi, а другие три — графические 
сопроцессоры NVIDIA Tesla K80. Установка драйверов, позволяющих работать с этими ком-
понентами, предполагает внесение изменений в ядро Linux [2], которые несовместимы друг 
с другом, что делает невозможным использование одного ядра двумя архитектурами сразу. 
Следовательно, при планировании сетевой загрузки необходимо будет создать два сетевых 
корня (/nfs/root-MIC и /nfs/root-GPU), каждому из которых TFTP-сервер [3] будет назначать 
своё ядро.

Для реализации было решено использовать систему упрощённого управления крупными 
кластерами xCAT (Extreme Cloud Administration Toolkit) [4]. С её помощью стало возможным 
выполнить базовую настройку операционной системы на каждом из вычислительных узлов 
с учётом особенностей архитектуры сопроцессоров, прикладывая минимум усилий по на-
стройке отдельных компонентов, таких как DHCP, TFTP или NFS. В том числе, не было необхо-
димости настраивать конфигурацию начального загрузочного окружения initrd, что является 
довольно трудоёмкой задачей при настройке сетевой загрузки вручную.

1.2. Виртуальные служебные узлы

Изначальная структура кластера (рис. 1) предполагала наличие только одного головного 
узла, ответственного за взаимодействие всех аппаратных и программных компонентов между 
собой. Однако подобная схема работы подразумевает чрезмерную нагрузку на единственный 
сервер, что может приводить к замедлению и снижению стабильности его работы.

Рис. 1. Изначальная структура кластера
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Для решения проблемы было решено воспользоваться ресурсами шлюза, функция кото-
рого ранее заключалась лишь в изоляции внутренней сети кластера от внешней сети ФКН. 
Благодаря загрузке в режиме Xen-гипервизора [5], подразумевающего адаптацию Linux-ядра 
для упрощения взаимодействия гостевой ОС с хостом, появилась возможность одновременно 
развернуть четыре виртуальных служебных узла без потери производительности. В результа-
те задача бывшего головного узла сократилась до управления файловым хранилищем и содер-
жания xCAT-сервера для сетевой загрузки.

Итоговая схема узлов вычислительного кластера представлена на рис. 2.

2. Изменение программного комплекса

2.1. Появление LDAP-сервера

Появление новых виртуальных узлов дало возможность более детально распределить на-
грузку по кластеру. В частности, были внесены изменения в политику управления пользо-
вателями и группами. До появления LDAP-сервера данные об учётных записях хранились в 
стандартных расположениях Linux: /etc/passwd, /etc/group, /etc/shadow. И хотя такой способ 
чрезвычайно прост для настройки и понимания, он не обладает достаточной эффективностью 
для использования на кластерной системе, поскольку любое изменение необходимо дублиро-
вать на каждый из узлов.

Теперь же за хранение данных об учётных записях пользователей и группах отвечает от-
дельный узел, соединение с которым возможно даже на сопроцессорах Xeon Phi, что позволяет 
осуществлять быстрый и централизованный контроль, не нагружая при этом другие узлы, 
включая головной. Кроме того, при помощи LDAP возможно хранение дополнительной ин-
формации о пользователях, что также может оказаться полезным при работе с большим коли-
чеством студентов и преподавателей.

Рис. 2. Итоговая структура кластера



25

2.2. Создание двух очередей исполнения

Одним из ключевых преимуществ использования виртуальных машин стала возможность 
одновременного развёртывания двух серверов SLURM, отвечающих за организацию очереди 
исполнения программ на разнотипных сегментах кластера. Необходимость подобного реше-
ния обусловлена существенными различиями в архитектуре вычислительных узлов и сопро-
цессоров Xeon Phi. 

Благодаря созданию сетевого подключения вида “external bridge” удалось установить связь 
каждого из четырнадцати сопроцессоров со всем кластером целиком, а не только с вычисли-
тельными узлами, к которым Xeon Phi присоединены физически. На всех было установлено 
дополнительное ПО, которое позволило получить к ним доступ в так называемом native-ре-
жиме, при котором не требуется участие хостового узла для проведения расчётов.

Однако устаревшая версия Linux-ядра 2.6 на сопроцессорах оказалась несовместимой с 
используемой на кластере версией SLURM, что привело к необходимости организации второ-
го сервера специально для них, переключиться на который пользователи могут при помощи 
специально созданного модуля intel/2017, одновременно предоставляющего доступ к компи-
лятору icc, поддерживающему ключ компиляции –mmic. Следует заметить, что обновление 
операционной системы на сопроцессорах также является невозможным ввиду прекращения 
их официальной поддержки с 2018 года.

Конечная структура очередей исполнения представлена на рис. 3.

Заключение

В результате проведения реорганизации гибридный вычислительный кластер Воронеж-
ского государственного университета стал обладать более производительной и оптимально 
настроенной программной архитектурой, что существенно расширило возможности для об-
учения студентов навыкам параллельного программирования и написания выпускных ква-
лификационных работ. Внесены изменения в логику загрузки вычислительных узлов по сети, 
внедрено использование технологии паравиртуализации для создания нескольких служебных 
узлов. Имеющиеся на кластере сопроцессоры были переведены в native-режим, что позволи-

Рис. 3. Структура очередей исполнения на кластере
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ло подключить каждый из них к централизованной очереди исполнения и, в конечном счёте, 
увеличить совокупную производительность вычислительного кластера.
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